The Schrödinger-weil Representation and Jacobi Forms of Half-integral Weight
نویسنده
چکیده
In this paper, we define the concept of Jacobi forms of half-integral weight using Takase’s automorphic factor of weight 1/2 for a two-fold covering group of the symplectic group on the Siegel upper half plane and find covariant maps for the SchrödingerWeil representation. Using these covariant maps, we construct Jacobi forms of half integral weight with respect to an arithmetic subgroup of the Jacobi group.
منابع مشابه
Theta Series Associated with the Schrödinger-weil Representation
In this paper, we define the Schrödinger-Weil representation for the Jacobi group and construct covariant maps for the Schrödinger-Weil representation. Using these covariant maps, we construct Jacobi forms with respect to an arithmetic subgroup of the Jacobi group.
متن کاملOn the Fourier expansions of Jacobi forms of half-integral weight
Using the relationship between Jacobi forms of half-integral weight and vector valued modular forms, we obtain the number of components which determine the given Jacobi form of index p, p or pq, where p and q are odd primes.
متن کاملJacobi Forms of Critical Weight and Weil Representations
Jacobi forms can be considered as vector valued modular forms, and Jacobi forms of critical weight correspond to vector valued modular forms of weight 1 2 . Since the only modular forms of weight 1 2 on congruence subgroups of SL(2,Z) are theta series the theory of Jacobi forms of critical weight is intimately related to the theory of Weil representations of finite quadratic modules. This artic...
متن کاملThe Weil Representations of the Jacobi Group
The Jacobi group is the semi-direct product of the symplectic group and the Heisenberg group. The Jacobi group is an important object in the framework of quantum mechanics, geometric quantization and optics. In this paper, we study the Weil representations of the Jacobi group and their properties. We also provide their applications to the theory of automorphic forms on the Jacobi group and repr...
متن کاملLocal and global Maass relations
We characterize the irreducible, admissible, spherical representations of GSp4(F ) (where F is a p-adic field) that occur in certain CAP representations in terms of relations satisfied by their spherical vector in a special Bessel model. These local relations are analogous to the Maass relations satisfied by the Fourier coefficients of Siegel modular forms of degree 2 in the image of the Saito-...
متن کامل